hydrogen, fuel cells, and infrastructure technologies program # Hydrogen Safety U.S. Department of Energy Distributed Energy Road Show ### **Barriers and Status** #### **Barriers** - Historical data is limited - Rationale for current practice cannot be verified. - Local government, Fire Marshal and public perceptions are shaped by past history. - Creation and adoption of new codes and standards is a slow process. #### **Status** - Flammability studies indicate lean limit ≥ 6% - Tests simulating a pressure relief device failure in a closed garage passed the residential fire code. - Flame radiation values are extremely low. - Bullet penetration tests were benign. ## Hydrogen Fundamentals - Energy Content: 60,958 Btu/lb highest energy content of all fuels on a weight basis - This is why NASA uses hydrogen they care a lot more about weight than volume) - Energy content is about three times higher than gasoline, natural gas, and propane on a weight basis - Energy content is only about one third that of natural gas and about an eighth that of propane on a **volume** basis - Flammability limits* (in air): 4.1 v% 74 v% - Explosion limits (in air): 18.3 v% 59 v% ^{*} Recent results indicate the lower value may be greater than 6% ## Hydrogen Today ### Production (9 million tons per year) - Steam methane reforming - Electrolysis - Byproduct #### Uses – largely in industrial settings - Petroleum upgrading - Food processing (hydrogenation) - Semiconductor processing - NASA (only large-scale fuel use) ### Transporting/Delivery - Pipeline - Liquid tanker - Tube trailer (compressed gas) - Chemical carrier (ammonium) ## **US Hydrogen Facilities** ## NASA Hydrogen Facilities - Single largest user of hydrogen for fuel - Kennedy Space Center 850,000 gallon liquid storage - Approximately 20 tank trucks driven in from Louisiana for each shuttle launch ## Hydrogen Pipelines #### Praxair's Chicago Area Pipeline System Air Liquide Gulf Coast Pipeline System Lake LOUISIANA Michigan Beaugnorif Houston Characters TEXAS Three Rivers Victors Air Products' Louisiana Hydrogen Pipeline Syster **Baton** Rouge Legend Hydrogen Pipeline orpus Christi Cyagen Pipeline Source: Pressic Inc. Nitrogen Pipeline Air Separation Plant ▲ Hydrogen Plant Cogeneration Plant Hydrogen/CO Plant Postchartrain Source: Air Liquide Ar Products Facilities Hydrogen Positive Brance: Nr Positivits and Commission Inc. #### Air Products' U.S. Texas Gulf Coast Hydrogen Pipeline System #### Praxair's U.S. Gulf Coast Hydrogen Pipeline System Balle Chase - Oxygen - Ntropen - Hydrogen ### Codes and Standards - Code-making bodies in the US - About 20 major developers (excluding federal agencies such as EPA and DOT) - Nearly all is done using a consensus process - Must be adopted by each jurisdiction to be "legal" and binding - Approximately 44,000 jurisdictions in the US - Federal, state, county, city or town ## Code Developers - International Code Council, Inc. (ICC) - Building Officials and Code Administrators International (BOCA) - International Conference of Building Officials (ICBO) - Southern Building Code Congress International, Inc. (SBCC) - Underwriters Laboratories (UL) - National Fire Protection Association (NFPA) - CSA International - Society of Automotive Engineers (SAE) - Institute of Electrical and Electronic Engineers (IEEE) - American Society of Mechanical Engineers (ASME) - International Electrotechnical Commission (IEC) - International Organization for Standards (ISO) - Compressed Gas Association (CGA) - Natural Gas Institute (NGI) - US Department of Transportation - Occupational Health and Safety Administration (OHSA) ### Issues - Codes & standards are being developed in advance of, or in parallel with, hydrogenfueled systems - Codes & standards development must be coordinated with technology development: follow a National Template - Efforts (funding) are being devoted to R&D to validate proposed standards (i.e., data to support or validate proposed requirements) #### Coordination is vital - All applications involve production, transportation, storage, dispensing, and use of hydrogen - A large number of organizations are involved in generating codes & standards ## Technical Approach - 1. 2004: Assemble panel of experts in hydrogen safety to provide expert technical guidance to funded projects. - 2. 2006: With industry and code officials, develop templates of commercially viable footprints for fueling stations that incorporate underground and above ground storage of liquid and gaseous hydrogen. - 3. <u>2008</u>: Complete safety requirements and protocols for vehicle safety and stationary refueling. - 4. <u>2010:</u> Complete best management practices handbook for hydrogen safety. # Key Codes | Component | Codes | Status | |----------------------------|---------------------------------------|-----------------| | Technology | | | | Production | NFPA 70/ NEC/CEC | mature | | | ASME Boiler-Pressure Vessel Sec. VIII | mature | | Transportation: | DOT | mature | | | 49 CFR | mature | | Pipeline | NEC/CEC | mature | | | ANSI/ASME B31.1, B31.8 | mature | | Storage | NFPA 50 A: Gaseous Hydrogen | mature (1994) | | _ | NFPA 50 B: Liquid Hydrogen | mature (1994) | | | ASME Boiler-Pressure Vessel Sec. VIII | mature | | Vehicle Refueling Stations | HV-3: Hydrogen Vehicle Fuel | being developed | | | NFPA 52: CNG Vehicle Fuel | base for HV-3 | | | HV-1: Hydrogen Vehicle Connector | being developed | | | NGV1: NGV connectors | base for HV-1 | | Hydrogen Vehicles | HV-3: Hydrogen Vehicle Fuel | being developed | | | NFPA 52: CNG Vehicle Fuel | base for HV-3 | | | HV-2: Gaseous Hydrogen Tanks | being developed | | | NGV2: CNG Storage Tanks | base for HV-2 | ## ISO-TC197 | Identification
Number | Title | Working Group | Convener
(Country) | |--------------------------|--|---------------|-----------------------| | DIS 13984 | Liquid H ₂ - Land Vehicle
Fueling System Interface | WG 1 | SCC (Canada) | | DIS 14687 | H ₂ Fuel-Product
Specification | WG 3 | ANSI (USA) | | NP 15594 | Airport H ₂ Fueling Facility | WG 4 | DIN (Germany) | | NP 15866 | Gaseous H ₂ and H ₂ Blends
Vehicular Fuel Systems | WG 5 | ANSI (USA) | | NP 15869 | Gaseous H ₂ - Vehicle fuel tanks | WG 6 | ANSI (USA) | | NP 15916 | Basic requirements for safety of H ₂ systems | WG 7 | DIN (Germany) | | WD 13985 | Liquid H ₂ - Land vehicle fuel tank | | SCC (Canada) | | WD 13986 | Tank containers for multimodal transport of liquid H ₂ | | SCC (Canada) | Vessels Connectors •SAE J2600 Fueling ## Fuel Systems Codes | Published/ | In Progress | Requested/ | |---|---|--| | Approved | | Proposed | | CGA G-5 Hydrogen Commercial H2 CGA G-5.3 Hydrogen Commercial Specification CGA G-5.4 Hydrogen Piping Systems CGA P-6 Hydrogen Standard Density Data ICC Family Codes, Fire, Fuel, Mechanical, | UL 2264: Gaseous H2 generation NFPA Codes: Fuel, Electrical, Storage SAE J2601: Vehicle Communication | •ANSI/CSA NGV2¹ Fuel
Containers
•ISO TC197 WG5: H2 &
H2 Blends Refueling
•ANSI/CSA NGV 4²
Dispensing Systems
•SAE J1616
Recommended Practice
•ISO TC-197 WG2 Tank
Containers | | Electrical | | Contamicio | | ASME Boiler & Pressure | | AND RESIDENCE OF THE PARTY T | ## Fuel Cell Codes | Published/
Approved | In Progress | |---|--| | •CSA CAS No. 33: Component Acceptance Service •CGA G-5.4 H2 Piping at Consumers •ICC Family Codes: Fire, Fuel, Mechanical Electrical •CSA Requirements 1.01 FC supplimental •ASME PTC 50 Performance Test •IEEE P1547 Interconnect Standard | •IEC TC 105 WG1 Terminology •UL 2265 Replacement FC Units •IEC TC105 WG2 FC Modules •IEC TC 105 WG3 FC Safety •NFPA 853 FC Installation •ANSI Z21.83/CSA FC-1 Fuel Cell Power Plants •NFPA Codes Fuel, Electrical, Storage •IEC TC 105 WG5 FC Installation •ISO TC 197 WG2 Containers and Hydrides | •UL 1741 Inverters & Converters #### Requested/ Proposed - •CSA FC-4 Fuel Cell Modules - •ISO TC 58 Tanks & Enbrittlement •NFPA 50B Liquid H2 Systems ## Hydrogen Delivery Codes | Published/
Approved | In Progress | Requested/
Proposed | |---|--|---------------------------------| | •ASME B31.8 Gas Transmission & Distribution •CSA CAS No. 33 Component Acceptance Service •Part 1910 29 CFR OSH Standards •DOT Guide First Responders | •ISO TC 197
WG2
Containers and
Hydrides
•NFPA 55
Combined 50
A&B | ISO TC 58 Tanks & Embrittlement | | on Emergencies •ASME B31.4 Pipeline Transportation •CGA G-5.4 H2 Piping at Consumers | | | | DOT 49 CFR Transportation of Hazardous Materials ASME Boiler & Pressure Code NFPA 58 Transport of LPG NFPA 50A Gaseous H2 Systems | | | **David Faust Collection** ### Hydrogen Automotive Codes | Published/
Approved | In Progress | |--|--| | •SAE J2574 Fuel Cell
Vehicle Terminology
•DOT/NHTSA
Vehicle Regulations
•SAE J2578
Recommended
Practices for Vehicle
Safety
•SAE J2579
Recommended
Practices for
Hazardous Fluid
Systems | SAE J2594 Fuel Cell
Recyclability Guidelines SAE J2615 Performance Test
Procedures for Fuel Cell
Systems SAE J2616 Performance for
Fuel Processor Subsystem SAE J2617 Performance Test
Procedures of PEM FC Stack
Subsystem SAE J2600 Compressed
Hydrogen Fueling Connectors SAE J2572 Recommended
Practice Exhaust Emissions SAE J2601 Compressed | Hydrogen Fueling Communication #### Requested/ Proposed - •ISO TC 197 Compressed Hydrogen Fueling Connectors - CSA/NGV2 Fuel Tanks for Hydrogen ## Hydrogen Uses – Tomorrow - Mobile Applications - Fuel cell vehicles (buses, trucks, passenger) - Marine vehicles (submarines, ships, pleasure craft) - Modified ICEs - Stationary Applications - Uninterruptible power supplies - Backup/premium power - CHP - Portable Applications ### Guidelines for Hydrogen Systems - The Hydrogen Handbook for Building Code and Fire Safety Officials - The Hydrogen Sourcebook - Permitting Stationary Fuel Cells - Permitting Hydrogen Fuel Stations # Typical Hydrogen Site Plan Review - Confinement - Review Potential for Ignition - Minimizing Consequences - Review the Need for Detectors - Safety Analysis - Review Site-Specific Factors - Personal Investigation ## Detection #### Sensors - Safe, reliable, cheap sensors under development - Hand held and personnel sensors are needed - Requirements dictated by application ### Odorants/Tracers - Diffusion/dispersion correlation may be a requirement - Cost, Uniqueness and Impact on fuel cells ## Safe Hydrogen Systems - Safety issues can be handled through testing, certification, and codes & standards, just like with any other fuel - Sustained, collaborative government-industry RD&D is underway - Fuel cell and vehicle systems development are critical - Infrastructure and codes & standards development require significant government participation (on all levels) - Coordination is key ### For more information: ### Neil P. Rossmeissl U.S. Department of Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program Tel: 202-586-8668 Email: neil.rossmeissl@hq.doe.gov www.eere.energy.gov/hydrogenandfuelcells